《数学家的故事(数学家的故事300字)》正文开始,本次阅读大概1分钟。
1,希伯斯,发现√2就被丢到大海喂鱼了。
伟大的数学家——毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了。可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m等于多少,是整数呢,还是分数?毕达哥拉斯和他的门徒费了九牛二虎之力,也不知道这个m究竟是什么数。世界上除了整数和分数以外还有没有别的数?这个问题引起了学派成员希伯斯的兴趣,他花费了很多的时间去钻研,最终希伯斯断言:m既不是整数也不是分数,是当时人们还没有认识的新数。
希伯斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌。为了维护学派的威信,他们严密封锁希伯斯的发现,如果有人胆敢泄露出去,就处以极刑——活埋。然而真理是封锁不住的,尽管毕达哥拉斯学派规矩森严,希伯斯的发现还是被许多人知道了。他们追查泄密的人,追查的结果,发现泄密的不是别人,正是希伯斯本人。希伯斯竟背叛老师,背叛自己的学派。毕达哥拉斯学派按着规矩,要活埋希伯斯。希伯斯听到风声逃跑了。
希伯斯在国外流浪了好几年,由于思念家乡,他偷偷地返回希腊。在地中海的一条海船上,毕达哥拉斯的忠实门徒发现了希伯斯,他们残忍地将希伯斯扔进地中海。
2,埃瓦里斯特·伽罗瓦,一篇顶级论文在多名知名数学家手里揉烂无人重视,最后死于决斗。
埃瓦里斯特·伽罗瓦(1811年10月25日-1832年5月31日),1811年10月25日生,法国数学家。现代数学中的分支学科群论的创立者。用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,人们称之为伽罗瓦理论,并把其创造的“群”叫作伽罗瓦群(Galois Group)。在世时在数学上研究成果的重要意义没被人们所认识,曾呈送科学院3篇学术论文,均被退回或遗失。后转向政治,支持共和党,曾两次被捕。21岁时死于一次决斗。
埃瓦里斯特·伽罗瓦(Évariste Galois,1811年10月25日-1832年5月31日,法语发音evaʀist galwa),法国数学家,与尼尔斯·阿贝尔并称为现代群论的创始人。在一次几近自杀的决斗中英年早逝,引起种种揣测。[1]
伽罗瓦的父母都是知识分子,12岁以前,伽罗瓦的教育全部由他的母亲负责,他的父亲在伽罗瓦4岁时被选为Bourg La Reine的市长。
12岁,伽罗瓦进入路易皇家中学就读,成绩都很好,却要到16岁才开始跟随范涅尔(H.J. Vernier )老师学习数学,他对数学的热情剧然引爆,对于其他科目再也提不起任何兴趣。校方描述此时的伽罗瓦是“奇特、怪异、有原创力又封闭”。
年轻时的伽罗华的画像。
1827年,16岁的伽罗瓦自信满满地投考他理想中的(学术的与政治的)大学:综合工科学校,却因为颟顸无能的主考官而名落孙山。
1829年,伽罗瓦将他在代数方程解的结果呈交给法国科学院,由奥古斯丁·路易·柯西(Augustin Louis Cauchy) 负责审阅,柯西却将文章连同摘要都弄丢了(19世纪的两个短命数学天才阿贝尔与伽罗瓦不约而同地都“栽”在柯西手中)。
更糟糕的是,当伽罗瓦第二次要报考综合工科大学时,他的父亲却因为被人在选举时恶意中伤而自杀。正直父亲的冤死,影响他考试失败,也导致他的政治观与人生观更趋向极端。
伽罗瓦进入高等师范学院(Ecole Normale Supérieure)就读,次年他再次将方程式论的结果,写成三篇论文,争取当年科学院的数学大奖,但是文章在送到让·巴普蒂斯·约瑟夫·傅里叶手中后,却因傅里叶过世又遭蒙尘,伽罗瓦只能眼睁睁看着大奖落入阿贝尔与卡尔·雅可比(Carl Jacobi)的手中。
1830年七月革命发生,保皇势力出亡,高等师范校长将学生锁在高墙内,引起伽罗瓦强烈不满,12月伽罗瓦在校报上抨击校长的作法,因此被学校退学。由于强烈支持共和主义,从1831年5月后,伽罗瓦两度因政治原因下狱,也曾企图自杀。在监狱中,伽罗瓦仍然顽强地进行数学研究,一面修改他关于方程论的论文及其他数学工作,一面为将要出版的著作撰写序言。
据说1832年3月他在狱中结识一个医生的女儿并陷入狂恋,因为这段感情,他陷入一场决斗,[1]自知必死的伽罗瓦在决斗前夜将他的所有数学成果狂笔疾书纪录下来,并时不时在一旁写下“我没有时间”,第二天他果然在决斗中身亡,时间是1832年5月31日。这个传说富浪漫主义色彩,为后世史家所质疑。
在去世的前一天晚上,伽罗瓦仍然奋笔疾书,总结他的学术思想,整理、概述他的数学工作。他希望有朝一日自己的研究成果能大白于天下。
他的朋友奥古斯特·舍瓦烈(August Chevalier )遵照伽罗瓦的遗愿,将他的数学论文寄给卡尔·弗里德里希·高斯与卡尔·雅可比,但是都石沉大海,要一直到1843年,才由刘维尔肯定伽罗瓦结果之正确、独创与深邃,并在1846年将它发表。
3,罗巴切夫斯基,推翻欧氏几何却遭到几乎全体数学界的反对,最后郁郁而终。
罗巴切夫斯基是在尝试解决欧氏第五公设问题的过程中,从失败走上他的发现之路的。欧氏第五公设问题是数学史上最古老的著名难题之一,它是由古希腊学者更先提出来的。
公元前三世纪,希腊亚历山大里亚学派的创始者欧几里得集前人几何研究之大成,编写了数学发展史上具有极其深远影响的数学巨著《几何原本》。
这部著作的重要意义在于,它是用公理法建立科学理论体系的最早典范。在这部著作中,欧几里得为推演出几何学的所有命题,一开头就给出了五个公理(适用于所有科学)和五个公设(只应用于几何学),作为逻辑推演的前提。《几何原本》的注释者和评述者们对五个公理和前四个公设都是很满意,唯独对第五个公设(即平行公理)提出了质疑。
第五公设是论及平行线的。它说的是:如果一直线和两直线相交,且所构成的两个同旁内角之和小于两直角,那么,把这两直线延长,它们一定在那两内角的一侧相交。数学家们并不怀疑这个命题的真实性,而是认为它无论在语句的长度,还是在内容上都不大像是个公设,而倒像是个可以证明的定理,只是由于欧几里得没能找到它的证明,才不得不把它放在公设之列。
为了给出第五公设的证明,完成欧几里得没能完成的工作,自公元前3世纪起到19世纪初,数学家们投入了无穷无尽的精力,他们几乎尝试了各种可能的 *** ,但都遭到了失败。
冷漠与否定
1826年2月23日,罗巴切夫斯基于喀山大学物理数学系学术会议上,宣读了他的之一篇关于非欧几何的论文:《几何学原理及平行线定理严格证明的摘要》。这篇首创性论文的问世,标志着非欧几何的诞生。然而,这一重大成果刚一公诸于世,就遭到正统数学家的冷漠和反对。
嘲讽与攻击
罗巴切夫斯基的首创性论文没能引起学术界的注意和重视,论文本身也似石沉大海,不知被遗弃何处。但他并没有因此灰心丧气,而是顽强地继续独自探索新几何的奥秘。1829年,他又撰写出一篇题为《几何学原理》的论文。这篇论文重现了之一篇论文的基本思想,并且有所补充和发展。此时,罗巴切夫斯基已被推选为喀山大学校长,可能出自对校长的“尊敬”,《喀山大学通报》全文发表了这篇论文。
无助与孤独
在创立和发展非欧几何的艰难历程上,罗巴切夫斯基始终没能遇到他的公开支持者,就连非欧几何的另一位发现者德国的高斯也不肯公开支持他的工作。
高斯是当时数学界首屈一指的学术巨匠,负有“欧洲数学之王”的盛名。早在1792年,也就是罗巴切夫斯基诞生的那一年,他就已经产生了非欧几何思想萌芽,到了1817年已达成熟程度。他把这种新几何最初称之为“反欧几何”,后称“星空几何”,最后称“非欧几何”。但是,高斯由于害怕新几何会激起学术界的不满和社会的反对,会由此影响他的尊严和荣誉,生前一直没敢把自己的这一重大发现公之于世,只是谨慎地把部分成果写在日记和与朋友的往来书信中。
当高斯看到罗巴切夫斯基的德文非欧几何著作《平行线理论的几何研究》后,内心是矛盾的,他一方面私下在朋友面前高度称赞罗巴切夫斯基是“俄国最卓越的数学家之一”,并下决心学习俄语,以便直接阅读罗巴切夫斯基的全部非欧几何著作;另一方面,却又不准朋友向外界泄露他对非欧几何的有关告白,也从不以任何形式对罗巴切夫斯基的非欧几何研究工作加以公开评论。他积极推选罗巴切夫斯基为哥廷根皇家科学院通讯院士,可是,在评选会和他亲笔写给罗巴切夫斯基的推选通知书中,对罗巴切夫斯基在数学上的最卓越贡献——创立非欧几何却避而不谈。
高斯凭其在数学界的声望和影响,完全有可能减少罗巴切夫斯基的压力,促进学术界对非欧几何的公认。然而,在顽固的保守势力面前,他却丧失了斗争的勇气。高斯的沉默和软弱表现,不仅严重限制了他在非欧几何研究上所能达到的高度,而且客观上也助长了保守势力对罗巴切夫斯基的攻击。
晚年的罗巴切夫斯基心情更加沉重,他不仅在学术上受到压制,而且在工作上还受到限制。按照当时俄国大学委员会的条例,教授任职的更高期限是30年,依照这个条例,1846年罗巴切夫斯基向人民教育部提出呈文,请求免去他在数学教研室的工作,并推荐让位给他的学生波波夫。
人民教育部早就对不顺从他们意志办事的罗巴切夫斯基抱有成见,但又找不到合适的机会免去他在喀山大学的校长职务。罗巴切夫斯基辞去教授职务的申请正好被他们用以作为借口,不仅免去了他主持教研室的工作,而且还违背他本人的意愿,免去了他在喀山大学的所有职务。被迫离开终生热爱的大学工作,使罗巴切夫斯基在精神上遭到严重打击。他对人民教育部的这项无理决定,表示了极大的愤慨。
家庭的不幸格外增加了他的苦恼。他最喜欢的、很有才华的大儿子因患肺结核医治无效死去,这使他十分伤感,他的身体也变得越来越多病,眼睛逐渐失明,最后终于什么也看不见了。